
LA-UR-19-21161
Approved for public release; distribution is unlimited.

Title: Container Mythbusters

Author(s): Jennings, Michael E.

Intended for: HPC/AI Advisory Council 2019 Stanford Conference,
2019-02-14/2019-02-15 (Palo Alto, California, United States)

Issued: 2019-02-20 (rev.1)

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

Operated by Triad National Security, LLC for the U.S. Department of Energy's NNSA

Operated by Triad National Security, LLC for the U.S. Department of Energy's NNSA

Michael Jennings (@mej0) – mej@lanl.gov
Platforms Team Lead, HPC Systems Group

Los Alamos National Laboratory

2019 Stanford Conference
HPC/AI Advisory Council

Stanford University, Palo Alto, CA
15 February 2019

Debunking the Nonsense,
Dissecting the Misconceptions,

and Distilling the Facts
of High-Performance Containering

LA-UR-19-21161

Container Mythbusters

UNCLASSIFIED

Los Alamos National Laboratory

Los Alamos National Laboratory | UNCLASSIFIED 15-Feb-2019 | 3

• Established in 1943 as “Site Y” of the Manhattan Project
• Mission: To solve National Security challenges through

Scientific Excellence
• One of the largest science and technology institutes in the

world, conducting multidisciplinary research in fields such
as national security, space exploration, renewable
energy, medicine, nanotechnology, and supercomputing.

Introduction

• Funded primarily by the Department of Energy, we also do extensive work for/with the Departments of
Defense and Homeland Security, the Intelligence Community, et al.

• Our strategy reflects US government priorities including nuclear security, intelligence, defense,
emergency response, nonproliferation, counterterrorism, and more.

• We help to ensure the safety, security, and effectiveness of the US nuclear stockpile.
• Since 1992, the United States no longer performs full-scale testing of nuclear weapons. This has

necessitated continuous, ongoing leadership in large-scale simulation capabilities realized through
investment in high-performance computing.

LANL High-Performance Computing Division

Los Alamos National Laboratory | UNCLASSIFIED 15-Feb-2019 | 4

• LANL’s history in HPC dates back to the early ’50s.
• Accomplishments include:

• Helped IBM develop Stretch, the 1st transistor-based
supercomputer

• The 1st vector computer, Cray-1, deployed here
• Our CM-5 was #1 on the inaugural Top500 List
• 1st hybrid supercomputer (using IBM POWER and

PlayStation Cell processors), Roadrunner, was also
1st to break the PetaFLOP/s barrier

• Led by Gary Grider, creator of Burst Buffer technology

LANL has been a leader in HPC since before HPC was HPC!

Introduction

• We support over 2000
unique users across more
than 100 different
classified/open science
projects on 20+ clusters

MYTH: Containers are …insert definition here…

15-Feb-2019 | 5Los Alamos National Laboratory | UNCLASSIFIED

FACT: “Container” is a term used somewhat indiscriminately to mean
different things to different people & projects!

Los Alamos National Laboratory | UNCLASSIFIED 15-Feb-2019 | 6

“Container” sometimes refers to the entire stack/collection of individual layers and metadata that compose
a final, tagged filesystem tree.
• Docker calls each layer an “image” and the tagged grouping a “repository.”
• Frequently this concept is also referred to as an “image,” especially in day-to-day speech and in writing.
• Each tag points only to a single layer, but since layers are limited to a single parent, the terms wind up

being somewhat interchangeable even if a bit vague/confusing.
• Related to this, “container” is frequently used to refer to the merged/unified filesystem, often composed

by the container runtime, which acts as the root filesystem for the containerized application.

Containers are, fundamentally, processes! More on that to come…

What are containers?

“Container” is also used to refer to the process at runtime which is
invoked by the container runtime engine (e.g., Docker) and is the
entrypoint (usually PID 1) of the containerized application.
• This is generally considered the “correct” definition and is the

one we’ll use.
• I’m not perfectly consistent about this either, so if the meaning

isn’t clear from context, feel free to ask!

Image credit: Red Hat

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/overview_of_containers_in_red_hat_systems/introduction_to_linux_containers

MYTH: Containers are the new chroot().

15-Feb-2019 | 7Los Alamos National Laboratory | UNCLASSIFIED

FACT: Linux employs several kernel features, system calls, and services
to “containerize” processes.

Los Alamos National Laboratory | UNCLASSIFIED 15-Feb-2019 | 8

Modern kernel features allow us to instruct the kernel to “lie” to our applications about various attributes of
the system, including filesystem mounts, process IDs, hostnames, network stacks, and more.
• 6 Privileged Namespaces (require CAP_SYS_ADMIN to create)

• mount – Private filesystem mount points, recursion/propagation controls
• pid – Private view of process IDs and processes, init semantics
• uts – Private hostname and domainname values
• net – Private network resources (devices, IPs, routes, ports, etc.)
• ipc – Private IPC resources (SysV IPC objects, POSIX msg queues)
• cgroup – Private control group hierarchy (Linux 4.6+ only)

• 1 Unprivileged Namespace (requires no special capabilities to create)
• user – Private UID and GID mappings; can be combined with

other namespaces, even if unprivileged
• System Call API: unshare(2), clone(2), setns(2)

Containers are lies we tell ourselves. Or, rather, our applications.

Lies, Damned Lies, and Containers

FACT: Linux employs several kernel features, system calls, and services
to “containerize” processes.

Los Alamos National Laboratory | UNCLASSIFIED 15-Feb-2019 | 9

The Linux kernel has several additional subsystems that containers sometimes use:
• cgroups – Control hierarchical resource management and usage constraints

• Latest kernels (4.6+) even have namespaces for this!
• Schedulers/RMs use to track/control job resource utilization

• seccomp-bpf – Berkeley Packet Filter-based syscall filtering
• Frequently used to prevent containers from exceeding their scope

• prctl(*_NO_NEW_PRIVS) – Prevent privilege escalation
• Kernel-level flag that prevents execve() granting privileges.
• Persists across all calls to fork(), clone(), and execve()
• Privileged containerization is unsafe without this.

• SELinux – MLS/MAC Labeling system for files/processes
• Allows admins precise control over actions, roles of applications

• AppArmor – Profile-based MAC system for limiting apps’ abilities
• Similar to SELinux but without filesystem labeling features

Containers are lies we tell ourselves. Or, rather, our applications.

Lies, Damned Lies, and Containers

MYTH: Containers are lightweight/more efficient VMs.
MYTH: Containers should be used to replace/virtualize entire servers.

15-Feb-2019 | 10Los Alamos National Laboratory | UNCLASSIFIED

FACT: Containers couple applications to their OS environment. Their
flexibility allows them many uses, though.

Los Alamos National Laboratory | UNCLASSIFIED 15-Feb-2019 | 11

In the Docker/OCI ecosystem, when you build a container, you specify a “command” or an
“entrypoint:” the command to run when the container starts up.
• All other processes in the container are children of this single parent command.
• The analogue of an application container is an application, not a machine.
• The term “operating system virtualization” is often misunderstood; it simply means that

containerized applications have a unique/altered view of the underlying OS but not of the kernel!
• From the perspective of the kernel, containers are always processes and their children.
• Some container runtimes allow for the creation of virtual networks, volume mounts, etc. At

minimum, though, containers have distinct views of the filesystem mount table, including the OS.

Container runtimes differ. Ask your doctor which one is right for you!

Application Containers

Depending on the runtime, certain details may differ. So there are exceptions!
• The system-nspawn container system expects to “boot” the container.
• LXD offers VM-/cloud-like functionality like replication and live migration
• Even with Docker, it’s possible to convert hosts into containers. But if that’s

the goal, Docker may not be the best tool for that job. At least not by itself.
• HPC job containers are app containers. Microservices containers aren’t!

MYTH: Containers contain.
MYTH: Containers don’t contain.

15-Feb-2019 | 12Los Alamos National Laboratory | UNCLASSIFIED

FACT: Containers contain passively, not actively.
Think buckets, not prisons.

Los Alamos National Laboratory | UNCLASSIFIED 15-Feb-2019 | 13

Containers are primarily an abstraction & encapsulation technique, not a security measure.
• The Linux kernel does not go out of its way to prevent containerized processes from escaping

namespaces or crossing between them. In fact, it explicitly allows this (via the setns() syscall)!
• Additionally, numerous endpoints in the /proc filesystem offer opportunities to “escape” or cross over

the namespace boundary and move “outside” the container.
• That’s where the additional kernel features come in. Privileged containers need additional security

measures to be “safe” (e.g., SELinux/AppArmor, seccomp-bpf).

There’s “Secure,” and there’s “Not Exactly.” Make sure you choose the right one!

Container Containment

Unprivileged containers get safety measures imposed by the kernel.
• Capabilities-based, kernel-enforced policies govern interaction/

movement between namespaces.
• Extensive testing and R&D has gone into user namespaces to make

them usable & secure.
• Something must manage the privilege boundary between contained

process(es) and the system.

MYTH: “Container” is shorthand for “Docker Container.”

15-Feb-2019 | 14Los Alamos National Laboratory | UNCLASSIFIED

FACT: There are numerous container runtimes and related technologies;
most are built around or leverage the OCI standards.

Los Alamos National Laboratory | UNCLASSIFIED 15-Feb-2019 | 15

Like any tool, Docker isn’t always the right choice. Expand your toolbox!

The Vast Container Landscape

Docker did popularize Linux containers by making them portable, reproducible, and composable.
• Other players in the space took exception to certain design choices Docker, Inc., made and revolted.
• A global standards body was set up under The Linux Foundation as a Collaborative Project.
• The Open Container Initiative publishes Runtime and Image specifications, bootstrapped by Docker but

developed and governed openly by representatives from key member organizations.

FACT: There are numerous container runtimes and related technologies;
most are built around or leverage the OCI standards.

Los Alamos National Laboratory | UNCLASSIFIED 15-Feb-2019 | 16

Like any tool, Docker isn’t always the right choice. Expand your toolbox!

The Vast Container Landscape

High-Performance Computing has a unique set of challenges not seen in the web-app world. Docker’s
client/server architecture and root-only access model is not well suited to address them.
• NERSC’s Shifter came first; it uses a privileged runtime model and parallel filesystem storage to scale.
• LANL’s Charliecloud went the other direction, using user namespaces to facilitate unprivileged runtime;

backend image distribution at scale is left up to the user (only safe due to lack of privileged runtime).
• Singularity began as a non-container chroot()-based amalgamation of old technologies with poorly

understood behavior, was rewritten, and has since incompatibly reproduced much of the ecosystem.
• While not focused on the use cases of HPC, Red Hat’s podman offers runc-based OCI compliance

and addresses many of the issues with Docker. Unprivileged containers are now fully supported.

MYTH: Containers are hard and require complicated tools like Docker or Rkt.

15-Feb-2019 | 18Los Alamos National Laboratory | UNCLASSIFIED

FACT: Containers are easy, at least for the basics. These days, you can
even write your own container-based solutions in BASH!

Los Alamos National Laboratory | UNCLASSIFIED 15-Feb-2019 | 19

Recall the system call API is only 3 functions:
• unshare(2): Creates one or more new namespaces and moves the current process into them;
• clone(2): Creates a new process/thread, optionally putting it in one or more new namespaces; and
• setns(2): Places the calling process/thread into the specified new namespace.

Recent versions of util-linux include 2 shell commands that wrap 2 of the 3 calls:
• unshare(1): Runs a new program with one or more namespaces unshared from the parent; and
• nsenter(1): Enters the namespace(s) of other process(es), then executes shell/specified program.

Unless you can clearly articulate the technical rationale, don’t write your own!

Simply Contained

Namespace directives are also supported in systemd
unit files, making it easy to containerize services.

The gory details, however, are complex…so use an
existing solution, and understand why!

Image Credit: Toca do Tux

https://www.youtube.com/watch?v=-GaTqVmMf7I

MYTH: Docker is insecure.

15-Feb-2019 | 20Los Alamos National Laboratory | UNCLASSIFIED

FACT: Docker’s security record is sub-optimal.

Los Alamos National Laboratory | UNCLASSIFIED 15-Feb-2019 | 21

Since early 2017, there have been 17 vulnerabilities that could lead to kernel panics, host information
leaks, and privilege escalation inside or outside the container!
• Only 2 CVEs were obtained, both of which were within the past 6 months.
• One particular release fixed a total of SIX vulnerabilities, including 2 buffer overflows. No CVE IDs.
• At least 1 CVE covers multiple vulnerabilities, including the ability to join and affect the root namespace,

test for arbitrary file existence as root, and escalate to root by adding content to /usr/bin.
• 7 of the 9 releases in 2018 were for fixes to vulnerabilities, almost all of which were high severity.

Security experts and container experts have expressed serious concerns about its design/code:
• “I found the code of the setuid binaries quite difficult to read. It feels like upstream somewhen lost the

focus on the "minimal and clean" design that set*id programs require.”
• “Mixing user controlled data with "trusted" data generated by the setuid binary itself in the same registry

makes the code hard to read or to trust, respectively.”
• “After fixing the major security issues and doing some additional hardening we can keep [it]…since the

binaries are only accessible to members of [its UNIX] group. I wouldn't like to see world access for
those setuid binaries.”

“There is no supported means for privilege escalation…so no additional controls [are needed].”

Security through Insecurity?

https://bugzilla.suse.com/show_bug.cgi?id=1111411

FACT: Docker’s security record is sub-optimal.

Los Alamos National Laboratory | UNCLASSIFIED 15-Feb-2019 | 22

Since early 2017, there have been 17 vulnerabilities that could lead to kernel panics, host information
leaks, and privilege escalation inside or outside the container!
• Only 2 CVEs were obtained, both of which were within the past 6 months.
• One particular release fixed a total of SIX vulnerabilities, including 2 buffer overflows. No CVE IDs.
• At least 1 CVE covers multiple vulnerabilities, including the ability to join and affect the root namespace,

test for arbitrary file existence as root, and escalate to root by adding content to /usr/bin.
• 7 of the 9 releases in 2018 were for fixes to vulnerabilities, almost all of which were high severity.

Security experts and container experts have expressed serious concerns about its design/code:
• “I found the code of the setuid binaries quite difficult to read. It feels like upstream somewhen lost the

focus on the "minimal and clean" design that set*id programs require.”
• “Mixing user controlled data with "trusted" data generated by the setuid binary itself in the same registry

makes the code hard to read or to trust, respectively.”
• “After fixing the major security issues and doing some additional hardening we can keep [it]…since the

binaries are only accessible to members of [its UNIX] group. I wouldn't like to see world access for
those setuid binaries.”

“There is no supported means for privilege escalation…so no additional controls [are needed].”

Security through Insecurity?

https://bugzilla.suse.com/show_bug.cgi?id=1111411

FACT: Most reports of Docker being “insecure” are “pilot error.” The
docker CLI requires privilege for a reason!

Los Alamos National Laboratory | UNCLASSIFIED 15-Feb-2019 | 23

Docker is, by design, only accessible to the root user.
• Docker Enterprise Edition allows an authorization plugin to control access to the API.
• Most sites/users don’t bother exploring all the security features/options available in Docker, such as

customized seccomp-bpf filters, fine-grained capability control, privilege flag control, and more.
• As a result of the access model, true vulnerabilities in Docker are (arguably) limited to repo creators.

Looking at CVEs since 2016 (the first year all 4 were available publicly), Docker compares favorably:

Even so, it’s 2019! We have much better options today.
• Multiple schedulers & RMs support Docker, always by restricting direct user access to Docker API.
• Most security professionals agree using root-owned daemons or setuid binaries is unnecessarily risky.
• Current versions of all major Linux distributions, including RHEL & SLES, support user namespaces.
• Thanks to security expert Dan Walsh, Red Hat offers compatible/competing tools (podman, et al.).

If you open up access to it, then Docker isn’t what’s vulnerable…YOU ARE!

Docker access IS root access!

Charliecloud Docker Shifter Singularity

Vulnerability Count 0 0 (or 5) 0 2 17+

MYTH: Containers (or specific container runtimes) solve the problem of
reproducibility in computational and data science.

15-Feb-2019 | 24Los Alamos National Laboratory | UNCLASSIFIED

FACT: Reproducible Builds is an area of study unto itself, and no single
existing solution fully solves the reproducibility problem.

Los Alamos National Laboratory | UNCLASSIFIED 15-Feb-2019 | 25

Docker and Singularity both offer solutions to prescriptive container image generation.
• The Dockerfile format is supported by almost all container build engines. Build instructions are

preserved in the output via JSON-encoded layer metadata along with labels, lineage, etc.
• Singularity supports an RPM-specfile-like “recipe” syntax (not to be confused with Chef’s) with similar,

but incompatible, format and purpose. User Guide seems to confuse “reproducible” with “immutable.”
• Docker’s format facilitates “reproducible” layered images; each build directive creates a new, unique

layer which directly depends on the previous layer and records the directive used to create it.
• Docker/OCI image format uses Content-Addressable Storage for content assurance/persistence.

Many challenges still exist around reproducibility that are not solved, or even addressed, by containers.
• There are no guarantees that build instruction artifacts/effects are consistent across time. Nothing says

that “yum install foo” or “FROM centos:7” will have the same result in 5 years…or even a week.
• As Aleksa Sarai points out, the tar archive format is fraught with reproducibility roadblocks.
• Using CAS hashes to identify layers/images consistently requires infinite, eternal artifact archive.
• Reproducibility via containers ignores the key differentiator of containers vs. VMs – the kernel!

Many folks mistakenly say “reproducible” when they really mean “prescriptive.”

Relatively Reproducible?

https://www.cyphar.com/blog/post/20190121-ociv2-images-i-tar

MYTH: Containers are secure as long as the user’s UID inside the container
matches the user’s UID outside the container.

15-Feb-2019 | 26Los Alamos National Laboratory | UNCLASSIFIED

FACT: Container security is a multifaceted and highly nuanced issue.
That claim reflects incomplete/insufficient understanding.

Los Alamos National Laboratory | UNCLASSIFIED 15-Feb-2019 | 27

The kernel/userspace interface for containers is simple; the security model, however, is not.
• A number of issues were found early on that revealed overlooked corner cases.
• Numerous strange/subtle quirks are required to deal with combinations of namespaces and scenarios

common to HPC (e.g., in-memory root filesystems). (Charliecloud examples document many of them.)
• The complex interplay of identity, privileges, permissions, capabilities, kernel settings, and so forth is

challenging enough to get correct without hiding crucial details from the ultimate arbiter of access!

Example: If I told you to do chmod 4755 /bin/bash and that it’s safe because you’d have the same uid
“inside” the shell as you had “outside” it, would you do it? or would you think I’d taken leave of my senses?
• There’s a lot that happens between typing

bash and the shell prompt being displayed.
• There could be exploits that are useless on

their own but effective with root privileges.
• Privileged operations are privileged for

good reason; override at your own peril!

Exposing privileged operations to unprivileged users requires deep expertise!

Security Oversimplified.

-bash-4.2$ ls -Fla /bin/bash

-rwsr-xr-x 1 root root 964608 Oct 30 17:07 /bin/bash*

-bash-4.2$ /bin/bash

bash-4.2$ id

uid=1000(mej) gid=1000(mej) groups=1000(mej)

bash-4.2$

MYTH: User namespaces are too new to be considered secure.

15-Feb-2019 | 28Los Alamos National Laboratory | UNCLASSIFIED

FACT: User namespaces were introduced in Linux 3.8 (2013) and have
remained substantially unchanged since 3.19 (2015).

Los Alamos National Laboratory | UNCLASSIFIED 15-Feb-2019 | 29

Vulnerabilities in user namespaces have been minimal recently:
• Last CVE attributable to the unprivileged user namespace implementation was CVE-2014-8989.
• Vulnerabilities enabled by user namespace root access have happened, 2-4 each year 2015-2017.
• Container solutions which leverage unprivileged user namespaces (Charliecloud, PodMan, Rootless

RunC) were unaffected by recent nested user namespace issue (CVE-2018-18955); they also protect
against the new RunC binary replacement issue (CVE-2019-5736) when correctly configured.

If your container vendor is blazing their own trail, ask yourself…how fireproof are you?

The Road Not Not Taken

Most experts working on end-user containers are focused on user namespaces.
• For all the reasons we already talked about: in particular, the kernel-based

trust and security model.
• The safest path is the one where the bulk of the brain trust has its focus.
• It’s fine to invent your own solution, but that’s a lot to own. Make sure

technical rationale is sound!

Standards are good for everyone!

Charliecloud

Los Alamos National Laboratory | UNCLASSIFIED 15-Feb-2019 | 32

• LANL’s Container Runtime
– Available on GitHub: https://github.com/hpc/charliecloud
• 2018 R&D 100 Winner!

• Recent developments in version 0.9.x (currently 0.9.7):
• New Vagrantfile for generating Charliecloud-enabled (and

Docker-enabled) VM images based on CentOS 7 Virtualbox image.
• New example containers and tutorials based on MPICH, Spack,

spokeo, umoci, OpenMPI 3.1.3, and more.
• New ch-fromhost utility to seamlessly integrate host-based

resources into Charliecloud containers (HSN, GPU, libraries, etc.)
• Improved spec file for potential future inclusion in upstream distros.
• Significantly improved documentation (and how it gets generated on

RHEL-based platforms)

Speaking of which…

https://github.com/hpc/charliecloud

Any Questions?

15-Feb-2019 | 33Los Alamos National Laboratory | UNCLASSIFIED

	Slide Number 1
	Slide Number 2
	Los Alamos National Laboratory
	LANL High-Performance Computing Division
	MYTH: Containers are …insert definition here…
	FACT: “Container” is a term used somewhat indiscriminately to mean different things to different people & projects!
	MYTH: Containers are the new chroot().
	FACT: Linux employs several kernel features, system calls, and services to “containerize” processes.
	FACT: Linux employs several kernel features, system calls, and services to “containerize” processes.
	MYTH: Containers are lightweight/more efficient VMs.�MYTH: Containers should be used to replace/virtualize entire servers.
	FACT: Containers couple applications to their OS environment. Their flexibility allows them many uses, though.
	MYTH: Containers contain.�MYTH: Containers don’t contain.
	FACT: Containers contain passively, not actively.�Think buckets, not prisons.
	MYTH: “Container” is shorthand for “Docker Container.”
	FACT: There are numerous container runtimes and related technologies; most are built around or leverage the OCI standards.
	FACT: There are numerous container runtimes and related technologies; most are built around or leverage the OCI standards.
	MYTH: Containers are hard and require complicated tools like Docker or Rkt.
	FACT: Containers are easy, at least for the basics. These days, you can even write your own container-based solutions in BASH!
	MYTH: Docker is insecure.
	FACT: Docker’s security record is sub-optimal.
	FACT: Docker’s security record is sub-optimal.
	FACT: Most reports of Docker being “insecure” are “pilot error.” The docker CLI requires privilege for a reason!
	MYTH: Containers (or specific container runtimes) solve the problem of reproducibility in computational and data science.
	FACT: Reproducible Builds is an area of study unto itself, and no single existing solution fully solves the reproducibility problem.
	MYTH: Containers are secure as long as the user’s UID inside the container matches the user’s UID outside the container.
	FACT: Container security is a multifaceted and highly nuanced issue. That claim reflects incomplete/insufficient understanding.
	MYTH: User namespaces are too new to be considered secure.
	FACT: User namespaces were introduced in Linux 3.8 (2013) and have remained substantially unchanged since 3.19 (2015).
	Charliecloud
	Any Questions?

